

Using Hybrid Mini-grids to Improve Energy Access in Somaliland:

Lessons Learned Implementing the Energy Security and Resource Efficiency in Somaliland Programme

Randall Nottingham, ESRES Team Leader

Somaliland

- Former British protectorate declared independence from Somalia in 1991—not internationally recognized as independent country.
- Population of 3.5–4.5 million, mostly rural and some nomadic.
- GDP of \$2 billion, primarily from remittances, livestock, and agriculture.
- Per capita GDP about \$500.
- Generally avoided the security and terrorism issues of Somalia.
- All electricity provided by private ESPs generally running old, inefficient diesel generators.
- Semi-official national tariff of \$0.79/kWh.
- Energy access 60–80%.

Somaliland Operating Environment

Issues	Challenges	Opportunities	
Unrecognized country	 Lack of access to international finance Unenforceable contracts Reluctance of suppliers to engage Constrains import of affordable power 	 Provides incentive for RE to increase energy security and independence 	
 Low-level conflicts (FCAS) Clan/sub-clan conflicts Territorial dispute w/ Puntland 	 Inability to fully engage in contested areas Motivation for Government to demonstrate/extend remit 	 Increases need for energy security and resiliency provided by RE 	
 No formal legal & regulatory framework for electricity sector Somaliland Electrical Energy Act (SEEA) still not passed Regulation is limited and informal 	 Highest electricity tariff in the world Uncertainty stifles long-term investment Overlapping ESPs Constrains import of affordable power 	• Entrepreneurial opportunity for RE	

Somaliland Operating Environment (Cont.)

Issues	Challenges	Opportunities	
 No national grid No transmission system Very limited intra-city use of 33 kV Larger systems distribute at 11 kV Most systems distribute at line voltage 	 Limited opportunities for large-scale generation All generation linked to integrated local provider 	 Attractive environment for hybrid mini-girds 	
Extremely low energy densityLow population densityLow per capita usage	 High distribution/customer connection costs (e.g., customer buys meter) Need to encourage productive usage 	 Small systems will meet current needs of most towns and have large marginal impact 	
 Virtually no greenfield sites All but the smallest clusters of houses generally have some incumbent power provider 	 Incumbent operator has vested interest in preserving current system Local partner likely has extremely limited capacity 	 Somaliland has a high rate of access to electricity Operators have local legitimacy 	

Existing Systems Highlight 👔 ESR Somalilander's Resourcefulness

Fuel Management System

Switchgear Cooling **H MER** International MICROGRID Conference | 8th Annual | #HIMC2020

Vibration Suppression

Improvised Cross Arms

Average Annual Operating Cost*

= \$42

= \$69

= \$103

= \$288

= \$346

= \$606

H MER International **MICROGRID** Conference | 8th Annual | #HIMC2020

*Based on tariff of \$0.79/kWh and typical operating times. Refrigerator assumed to be on 24 hrs/day (8 hr. cycle time).

Somaliland Has Surprisingly High Rate of Energy Access

Graphic from Somali High Frequency Survey - December 2017

Somaliland Has Extremely Low "Electricity Density"

Population Density and Per Capita Electricity Consumption in Selected African Countries

	Per Capita		
	Population	Electricity	Electricity
	Density	Consumption	Density
Country	(Pop/km ²)	(kWh)	(kWh/km ²)
Rwanda	456	38	17,328
Zambia	22	709	15,598
Angola	23	401	9,223
Sudan	22	269	5,918
Congo (DRC)	36	114	4,104
Sierra Leone	99	33	3,267
Liberia	45	69	3,105
Niger	18	64	1,152
Somaliland	22	27	583

Average electricity density in Somaliland equates to 2-4 households using ten 20 W light

HMER International bulbs p MICROGRID Conference | 8th Annual | #HIMC2020

bulbs per km².

Lack of Regulation Results in Getting Wires Crossed

Distribution in Borama (June 2017)

ESRES Programme Overview

Objective

To promote green growth and poverty reduction in Somaliland through increased access to more affordable and reliable renewable energy services.

Phases

- ESRES1 (36 months): pilot-phase
- ESRES2 (36 months): expansion-phase

Funding and Implementation

- UKAid through FCDO Somalia
- GBP 20 million from International Climate Fund
- Coordination with Ministry of Energy and Minerals
- Mott MacDonald is the Programme Manager

H MER International MICROGRID Conference | 8th Annual | #HIMC2020

Μ

мот

MACDONALD

ESRES Theory of Change

Simplified ESRES Programme Logic

Questions ESRES Sought to Answer

ESRES1 Project Sites

Borama (Aloog)

Sheikh (Beder)

Burao (HECO)

Buhoodle (Telesom)

Badhan (Badhan Electricity)

Local Partners Made Significant Contribution to Hybrid Mini-Grid Projects

In aggregate, ESRES hybrid mini-grid grants were matched 100% by IPs.

Is it feasible to build hybrid mini-grids in a fragile, post-conflict environment?

Answer: Yes. ESRES supported developing nine hybrid minigrids with 8 MWp PV capacity throughout Somaliland.

Lessons Learned:

- Success required co-financing from implementing partners—ensuring buy in and engagement.
- Implementation required EPC contractors willing to take risk and collaborate with local client.
- ESRES played key role as catalyst: Financing, project management support, and technical oversight.
- Demonstration effect: Since ESRES, private sector invested in hybrid mini-grids with over 6 MWp of PV capacity.

Questions ESRES Sought to Answer

ESRES Hybrid Mini-grids Reduce

Generation Costs Levelized Cost of Energy Pre- and Post-ESRES

HOMER Training Key Success Factor in Hybrid Mini-grid System Design

HOMER training in Hargeisa, Somaliland, August 26-29, 2019 HIMER International MICROGRID Conference | 8th Annual | #HIMC2020

Answer: Yes. The three current ESRES projects reduced the LCOE by an average of 30%.

Lessons Learned:

- Need reliable tool to analyze proposed systems—and know how to use it.
- System design requires good baseline data.
- Need to assess system-wide impact, including distribution, metering, and changing usage patters (e.g., time-of-use and price elasticity).

H[®]MER International **MICROGRID** Conference | 8th Annual | #HIMC2020

Questions ESRES Sought to Answer

Pressure on Prices

Pulling Prices Down

- Government regulation
- Contractual terms
- Community pressure
- Verified baseline costs and tariff

Pushing Prices Up

- Increased availability of power (better service)
- IP seeking return on investment
- Increase in diesel cost
- Unverified baseline costs and tariff

H[®]MER International **MICROGRID** Conference | 8th Annual | #HIMC2020

Most IPs Significantly Reduced Their Tariff

Average tariff reduction of over 40%.

3

Answer: Yes, it can—ESRES achieved over 40% tariff reduction for targeted beneficiaries.

Lessons Learned:

- Ideally requires effective legal and regulatory framework.
- Much more challenging but still possible absent regulation.
- Other effective enforcement tools include grant agreement terms, bank guarantees, relationship with implementation partner, and community engagement/social pressure.

Questions ESRES Sought to Answer

How Does the User Mix

Affect Economic Viability?

What Does it Take to Power Economic Development?

Item	Power (W)	Business/Benefit
CFL Light Bulbs	50	 Extend shop hours Restaurant/café Night classes/studying Security
Sewing Machine	100	Dress-maker/tailor
TV & Satellite Dish	250	Restaurant/café
Computer (2-3) & Printer (1)	250-500	 Education Internet access
Refrigerator/Freezer	500 – 1,500	 Drink vendor Restaurant/café Grocery shop Health clinic
Power Tools	500 – 2,000	ConstructionFurniture-making
Air Compressor (2 HP)	2,000 – 2,500 (10 Amp Three-Phase)	Tire/auto repairConstructionSmall manufacturing
Water Pump	2,000 – 5,000 (10 – 15 Amp Three-Phase)	 Reduce water-gathering time Crop irrigation Livestock

The Next House Problem

Does reducing the price of electricity promote economic growth and reduce poverty?

Answer: Probably, but too soon to assess impact of ESRES Programme.

Lessons Learned:

4

- User mix a factor but not basis for implementation model.
- System should have sufficient capacity to allow for productive use.
- Assess importance of availability and reliability in supporting expected usage.
- Can't connect everyone—sometimes uncomfortable shortterm trade off between helping poor and promoting productive use.
- Design appropriate tariff structure.
- Be aware of gender-specific impacts and potential for labor substitution/displacement.

Summary

No.	Question	Answer	Lessons Learned
1	Is it feasible to build hybrid mini-grids in a fragile, post-conflict environment?	Yes	 Success supported by co-financing, strong suppliers, and technical assistance.
2	Can a hybrid mini-grid reduce generation costs?	Yes	 Requires good tools and data to properly design systems.
3	Does reducing generation costs lead to reduced electricity tariffs?	lt can	• Absent regulation, need alternative mechanisms such as contracts, bank guarantees, social pressure, and ultimately goodwill.
4	Does reducing the price of electricity promote economic growth and reduce poverty?	Probably, but un- confirmed	 Ensure system allows for productive use. Design appropriate tariff structure. Need to gather baseline data and conduct longitudinal study.