Cooking with electricity

The emerging opportunities for micro-grids

Dr. Jon Leary (<u>J.Leary@Lboro.ac.uk</u>) Besnik Hyseni Prof. Matt Leach Dr. Simon Batchelor

Background

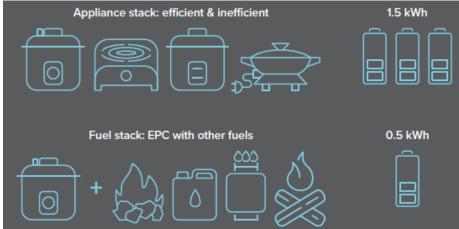
- 2.8 billion people still cook with biomass, yet just 789 million are now without access to electricity (IEA, IRENA, UNSD, World Bank & WHO, 2020)
- New opportunities opening up for eCooking
 - Falling costs of solar PV & battery storage
 - Energy-efficient appliances
 - Electric Pressure Cooker (EPC)

WORLD BANK GROUP

★ESMAP

Methodology

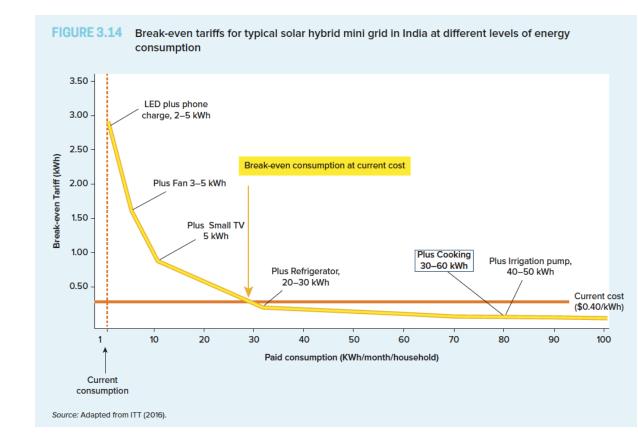
Compare the monthly cost of cooking with popular fuels and eCooking in 5 case studies


New empirical dataset on energy demand for cooking

- Cooking diaries
- Focus groups
- Household surveys
- Stakeholder workshops

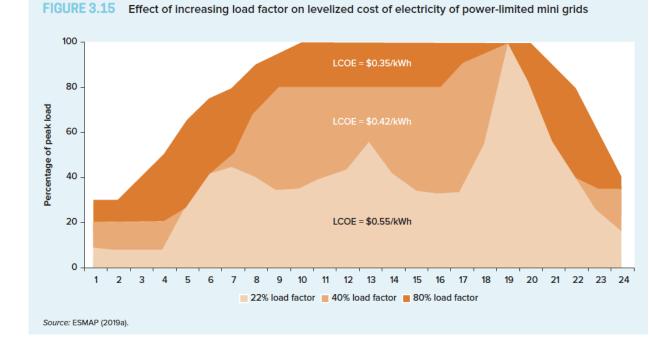
Techno-economic modelling

- Cost trends for key components
 - 2020, 2025
- With & w/o household energy storage
- Inefficient & efficient appliances



eCooking on mini-grids

Current perception: eCooking isn't viable on mini-grids


- Transforming 'high-grade' electricity into 'lower-grade' heat seen as wasteful
- Tariffs typically high
- Biomass fuels in rural areas cheap, or free
- Peak loading constraints

eCooking on mini-grids

The emerging opportunity:

- Many mini-grid developers actively stimulating demand
 - Load factor \uparrow = tariff \downarrow
- Many developing regions are rapidly urbanizing
 - Biomass fuel prices ↑
- Expenditures on biomass fuels can be converted into revenue for mini-grid developers

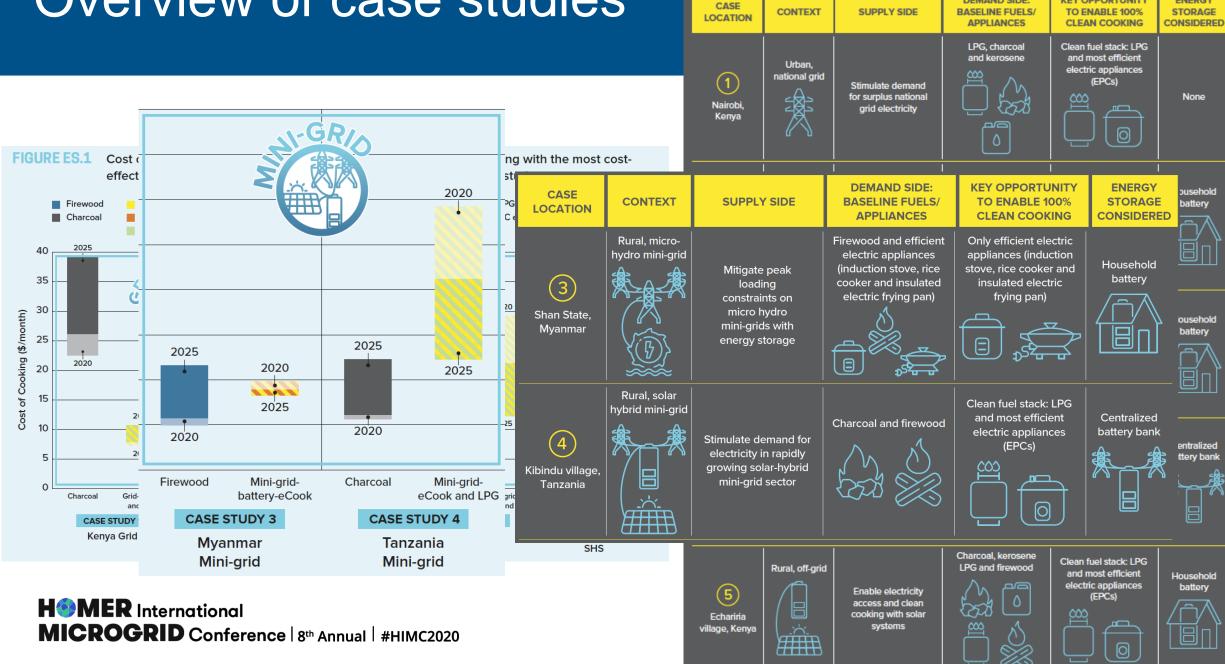

Overview of case studies

TABLE ES.1 Comparison of the five case studies and rationale for selection

DEMAND SIDE:

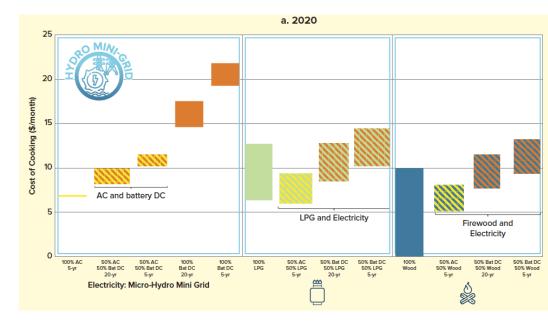
KEY OPPORTUNITY

ENERGY

Case study: Myanmar MHP

MHP tariffs often similar to national grids -> eCooking often already cost effective

- eCooking already a mainstream solution for MHP in SE Asia
 - Rice = major staple
 - Rice cookers affordable, userfriendly & energy-efficient
- Over 5,000 MHP systems in Shan State, Myanmar



Case study: Myanmar MHP

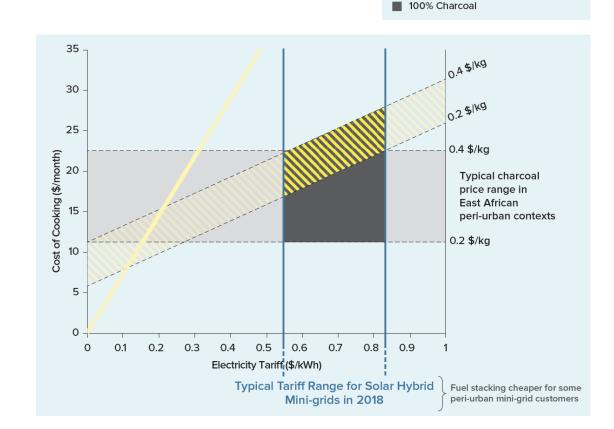
Major challenge: peak loading

- Potential solutions:
 - Increase generating capacity
 - Demand-side management
 - Energy-efficient cooking appliances
 - Time-shift cooking loads
 - Energy storage
 - Centralised/distributed
 - Water/battery
 - Off-peak cooking
 - Community agreements
 - Time of use tariffs

Case study: Tanzania solar-hybrid

Solar-hybrid mini-grids = most universally deployable mini-grid technology

Major challenge: high tariffs


- Tariffs typically several times higher than national grids
 - eCooking was prohibitively expensive
- Costs are declining rapidly
 - Load factor ↑, streamlined planning, component costs ↓ (ESMAP, 2019)
 - Tariffs 1: new opportunities for costeffective eCooking open up

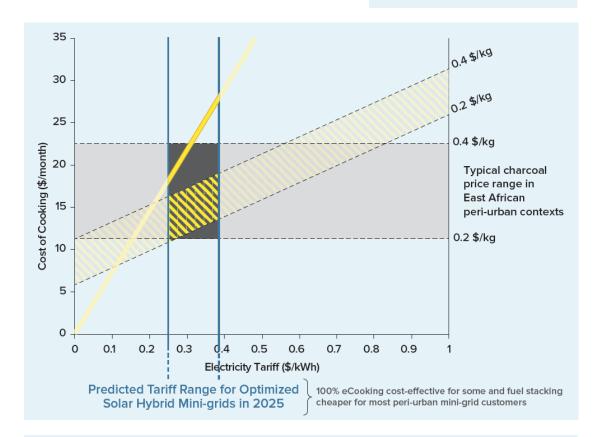
Case study: Tanzania solar-hybrid

2020:

- Tariffs typically \$0.55–\$0.85/kWh (ESMAP 2019)
- Fuel stacking highly efficient electric appliances (EPCs) with charcoal is cheaper than cooking with charcoal alone for some periurban mini-grid customers
 - Cost–viability gap of up to \$11 a month
- 100% eCooking not yet cost effective

100% Electricity

💦 Fuel Stacking: Electricity and Charcoal


FIGURE ES.2 Comparison of cost of cooking with charcoal, fuel stacking charcoal and electricity, and cooking solely with electricity for peri-urban mini-grid customers in Tanzania, 2018 (panel A) and 2025 (panel B) 0.2–0.4 \$/kg = Typical charcoal price range in East African peri-urban contexts

Case study: Tanzania solar-hybrid

2025:

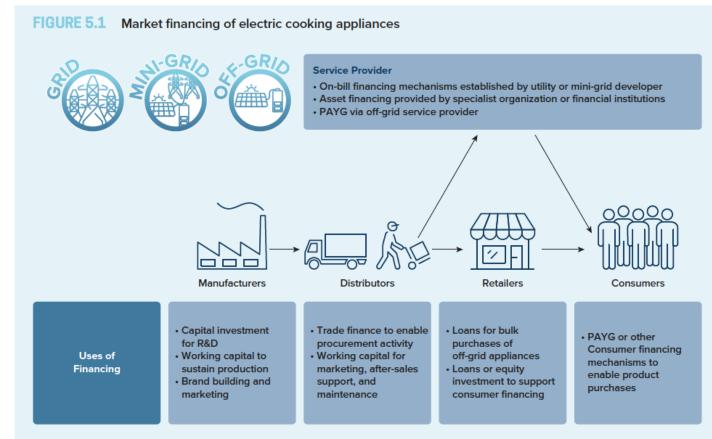
- Tariffs typically \$0.25–\$0.38/kWh (ESMAP, 2019)
- 100% eCooking cost-effective for some peri-urban MG customers
- Fuel stacking EPC/charcoal cheaper for most peri-urban MG customers

100% Electricity

100% Charcoal

💦 Fuel Stacking: Electricity and Charcoal

FIGURE ES.2 Comparison of cost of cooking with charcoal, fuel stacking charcoal and electricity, and cooking solely with electricity for peri-urban mini-grid customers in Tanzania, 2018 (panel A) and 2025 (panel B) 0.2–0.4 \$/kg = Typical charcoal price range in East African peri-urban contexts


Delivery models & financing

Challenges:

- eCooking is CAPEX heavy
- Behavioural change

Innovative financing & delivery models, e.g.

- On-bill financing
- Electricity price signaling
 - Off-peak tariffs
- Peer-to-peer women-led distribution models
- Consumer lending institutions

Source: Adapted from Global LEAP (2018).

Recommendations

Find out whether eCooking makes sense on your mini-grid

- How much are your customers paying for cooking fuels?
- What are your customers cooking?
 - Identify culturally-appropriate energyefficient eCooking appliances
 - Procure quality-assured models
- Model the implications of encouraging eCooking
 - Plan appropriate load management strategies

The Global LEAP Awards

NOMINATE A BEST-IN-CLASS ELECTRIC PRESSURE COOKER

Recommendations

Tackle behavioural change barriers

- Empower women entrepreneurs to market eCooking to their peers
- Develop on-bill financing mechanisms for eCooking appliances
- Carry out live eCooking demonstrations
 - Emphasise cost & time savings of energy-efficient appliances
 - Show that food cooked with electricity can be just as delicious

Conclusion

New opportunities are opening up for eCooking on mini-grids

- Energy-efficient appliances key for cost-effective eCooking
- eCooking already widely adopted on MHP in SE Asia
 - Energy storage can mitigate peak-loading constraints
- Cost reductions in solar hybrid MG sector
 - By 2025, eCooking likely to be costcomparable with biomass
- eCooking can stimulate demand & increasing MG impact

Find out more

Thanks for listening!

Visit MECS.org.uk to read:

- The report summary
- The full technical report

Jon Leary - J.Leary@Lboro.ac.uk

OKING ECTRICI A COST PERSPECTIVE **REPORT SUMMARY**

H MER International **MICROGRID** Conference | 8th Annual | #HIMC2020

World BANK GROUP

References

Bibliography

- ESMAP. 2020. Mini-grids for half a billion people. World Bank, Washington DC.
- IEA, IRENA, UNSD, World Bank, WHO. 2020. Tracking SDG 7: The Energy Progress Report. World Bank, Washington DC.

Photo credits

- Hannah Blair @ CLASP (slides 1,2,7,11,16)
- Jon Leary @ MECS (slides 8, 15)
- Jacob Fodio Todd @ MECS (slide 17)
- TaTEDO (slides 3, 14)
- REAM/YiMon (Slide 7)

