Design and feasibility analysis of hybrid energy-based electric vehicle charging station

Venkatesh Boddapati

Assistant Professor

Department Of Electrical and Electronics Engineering

B.M.S. College Of Engineering, Bengaluru, India

Objective of the presentation

- To develop a novel model for an EVCS using hybrid energy sources.
- To perform optimum sizing and techno-economic analysis of the proposed system.
- To analyze the proposed system in both grid-connected mode of operation and autonomous mode of operation.
- Sensitivity analysis of the system. (The effect of fuel cost variation, inflation rates and discount rates are considered to understand the variation of LCOE and NPC.)

Methodology adopted

Autonomous mode EVCS

Grid-connected mode EVCS

The output power of the PV module is calculated by using equation:

$$P_{Sol}(t) = P_{rat} f_{loss} \frac{G_h}{G_s} [1 + \alpha_p (T_C - T_s)]$$
(1)

 P_{rat} indicates solar power output capacity, f_{loss} indicates loss factor, G_h indicates hourly solar incident radiation on solar panel, G_s indicates standard incident radiation (1000W/m²) α_p indicates temperature coefficient of the power.

Electrical power output from the wind turbine system is calculated as:

$$\boldsymbol{P}_{e} = \frac{1}{2} \times \boldsymbol{\rho} \times \boldsymbol{C}_{p} \times \boldsymbol{A} \times \boldsymbol{V}^{3} \times \mathbf{10}^{-3}$$

Cp represents the power coefficient of the wind system , ρ represents the air density. A represents the surface swept by the rotor in (m²) and V indicated wind speed (m/s).

(2)

The power supplied to the grid is calculated by using equation:

$\mathbf{P}_{gs}(t) = [\mathbf{P}_{pv}(t)\eta_{inv} + \mathbf{P}_{w}(\mathbf{V}_{v})(t)] - \mathbf{P}_{L}(t)$

The amount of power drawn from the grid is calculated by using equation:

$P_{gp}(t) = P_L(t) - [P_{pv}(t)\eta_{inv} + P_w(V_v)(t)]$

Power consumed by the electric vehicle depends upon three factors, namely, distance travelled, battery capacity, and mode of driving. Power consumed by the electric vehicle can be calculated by using equation:

$$\boldsymbol{P}_{\boldsymbol{C}} = \frac{K_d \cdot E_k}{T} \tag{5}$$

 K_d indicates, number of kilometres driven, E_k indicates the energy necessary to drive the vehicle. T is the time required to charge the vehicle.

(3)

(4)

7

The power demand of the Nth electric vehicle can be calculated using equation:

 $\boldsymbol{P} = \sum_{i=1}^{N} \boldsymbol{P}_{\boldsymbol{C}}$

The energy required by the battery can be calculated by using equation:

$$Q_{Battery} = SOC + \int_0^t V_{bat} I_{bat} dt$$

SOC indicates the initial value of the charge of the battery.

The rating inverter can be calculated by using equation:

 $P_{inv}(t) = P_{pv}(t)\eta_{inv}$

 $P_{pv}(t) = P_{sol}(t) N_{sol}$

(6)

(7)

(8)

(9)

In an integrated grid system, the size of the inverter depends on grid sale capacity and local load demand.

$$P_{\max,inv} = P_{L,\max}(t) + P_{gs,\max}$$
(10)

LCOE is defined as the ratio of the sum of the entire cost collected during the Project lifespan to the number of kWh generated over the entire lifetime of the project.

 $\mathbf{LCOE} = \left(\sum_{i=0}^{T} \left[\frac{C_i + L_i + 0 \& M_i + I_i}{(1+d)^i} \right] \right) / \left(\sum_{i=0}^{T} \left[\frac{E_i}{(1+d)^1} \right] \right)$

NPC is defined as the present value of the total cost of the system throughout the Project lifetime minus the present value of the total revenue during the project lifetime.

$$NPC = \frac{C_{ann,tot}}{CRF(i,R_{proj})}$$
(12)

 $CRF_{(i,N)} = i(1+i)^n / ((1+i)^{(n-1)})$

HOMER MICROGRID AND 9TH ANNUAL
 INTERNATIONAL

(11)

(13)

The payback period indicates that the project will be profitable on completion of the payback period, EPP can be calculated using equation:

 $EPP = \frac{\sum C_c + C_{O\&M} + C_{Rep}}{C_{cash} flow}$

 C_c indicates the capital cost, $C_{O\&M}$ operation and maintenance cost.

PI can be calculated by using equation:

 $\text{LCOE} = \left(\sum_{i=0}^{T} \left[\frac{C_i + L_i + 0 \& M_i + I_i}{(1+d)^i} \right] \right) / \left(\sum_{i=0}^{T} \left[\frac{E_i}{(1+d)^1} \right] \right)$

(15)

(14)

Flowchart of the optimization algorithm performed in HOMER software

Resource utilization and selection of components

27.29 27.34 27.43

Month

25.9

JUN JUL AUG SEP OCT NOV DEC

24.8

24.3

Load curve

Autonomous mode

Case-2, when solar and DGs are active

Comparison of case-1 and case-2

Case study	Active Sources	Sizing of the sources	LCOE in \$	NPC in \$	OC in \$	Initial cost in \$	Payback period	PI
Case-1	Solar PV+DG+Wind	Solar PV-30KW DG-10KW Wind-3KW LA-147 string	0.336	5,06,503	16,173	1,02,181	4.418	>1
Case-2	Solar PV+DG	Solar PV-30KW DG-10KW LA-152 String	0.320	4,83,115	15,893	85,668	3.911	>1

Energy consumed by the EVs during the autonomous mode of operation

Case-1, when solar, wind and DGs are active

Case-2, when solar and DGs are active

Sensitivity analysis of system

Uncertainty is one of the essential parameters that must be considered while designing any type of Mini-grid or EVCS.

Variation of **discount rate**, inflation rate and **cost of fuel** is considered to **analyze the variation of NPC and LCOE**.

Summary of EVCS cost in autonomous mode (when solar PV and DG are active)

Component	Capital	Replacement	O&M	Fuel cost	Salvage cost	Total
Component	Cost in \$	in \$	in \$	in \$	in \$	in \$
Generator 10kW	2780	16680	30840	234339.49	(407.73)	284231.76
Solar PV 30 kW	36000	0	7500	0	0	43500
Battery 1kWh (152 numbers)	45600	91200	38000	0	(22636.64)	152163.36
Power modulator	128786	2575.73	0	0	(643.93)	3219.66
System	85667.86	110455.73	76340	234339.49	(23688.31)	4,83,114.78

Summary of EVCS cost in autonomous mode (when solar PV, wind and DG are active)

Component	Capital	Replacement	O&M	Fuel cost	Salvage cost	Total
Component	Cost in \$	Cost in \$	in \$	in \$	in \$	in \$
Generator 10kW	2780	16680	30817.50	233456.08	(421.63)	283311.95
Solar PV 30 kW	36000	0	7500	0	0	43500
Wind 3KW	18000	18000	4500	0	(13500)	27000
Battery 1kWh (147 numbers)	44100	88200	36750	0	(19610.22)	149439.78
Power modulator	1300	2601	0	0	(650.25)	3251.25
System	102180.5	125481	79567.50	233456.0	(34182.11)	5,06,502.97

Grid-connected mode of operation

Case-1, when solar and wind are active

Case-2, when solar alone is active

57%

Energy produced and energy sold to the grid when both solar PV and DG are active

Month	Energy purchased (kWh)	Energy sold (kWh)	Net energy purchased (kWh)	Energy charges (\$)
JAN	3,067	1,758	1,310	\$43.11
FEB	2,465	1,970	495	-\$49.02
MAR	2,765	2,344	421	-\$75.06
APR	2,718	1,859	858	-\$7.11
MAY	2,741	1,755	987	\$10.93
JUN	2,811	1,364	1,448	\$76.58
JUL	2,891	1,328	1,563	\$89.85
AUG	3,072	1,441	1,630	\$90.96
SEP	2,881	1,681	1,200	\$35.97
ОСТ	2,928	1,349	1,579	\$90.46
NOV	3,107	1,286	1,821	\$117.73
DEC	3,123	1,390	1,733	\$103.78
Annual	34,569	19,525	15,044	\$528.17

Energy produced and energy sold to the grid when solar PV, wind and DG are active

Month	Energy purchased (kWh)	Energy sold (kWh)	Net energy purchased (kWh)	Energy charges (\$)
JAN	3,076	1,752	1,324	\$44.80
FEB	2,481	1,951	530	-\$44.56
MAR	2,788	2,323	465	-\$69.59
APR	2,739	1,829	910	-\$0.416
MAY	2,780	1,729	1,051	\$18.60
JUN	2,862	1,336	1,525	\$85.72
JUL	2,929	1,301	1,628	\$97.71
AUG	3,097	1,419	1,678	\$96.82
SEP	2,895	1,667	1,228	\$39.47
ОСТ	2,940	1,341	1,599	\$92.83
NOV	3,112	1,283	1,829	\$118.78
DEC	3,133	1,386	1,747	\$105.36
Annual	34,831	19,318	15,514	\$585.51

Energy consumed by EVs and grid export

Case-1, when solar and wind are active

Case-2, when solar alone is active

Cost variation by varying the system architecture

Architecture of the				
system	NPC in \$	COE in \$	Operating cost in \$	Initial capital in \$
Case-1 Solar PV-Wind-				
Grid	90,041.5	0.045	1340.26	56,535
Case-2 Solar PV-Grid	64,475.09	0.03236	1037.61	38,535

Summary of the proposed system cost (solar PV is active)

Components	Capital cost in	Replacement cost	O&M cost in	Salvage cost in (\$)	Total (\$)
	(\$)	in (\$)	(\$)		
Converter	2534.90	5069.79	0	(1267.45)	6337.24
Solar PV	36000	0	7500	0	43,500
Grid	0	0	14637.84	0	14,637.84
System	38534.90	5069.79	22137.4	(1267.45)	64,475.80

Summary of the proposed system cost (when solar PV and wind are active)

Components	Capital (\$)	Replacement (\$)	O& M (\$)	Salvage(\$)	Total (\$)
Converter	2534.90	5069.79	0	(1267.45)	6337.24
Solar PV	36,000	0	7500	0	43,500
Grid	0	0	13,204.26	0	13,204.26
Wind	18,000	18,000	4500	(13500)	27,000
System	56,534.90	23,069.79	25,204.26	14,767.45	90,041.50

Greenhouse gases (GHG) mitigation

- One kWh of electricity generation from thermal power plants produces an average of 980g carbon dioxide, 1.24g sulphur dioxide, 2.59g nitrogen oxide and 68g ash.
- Generating adequate power from hybrid renewable sources reduces GHG emissions into the environment and can minimize environmental hazards, including global warming, ozone layer depletion, etc.
- GHG mitigation for the autonomous and grid connected mode of operation is calculated when only solar is active (best optimum result case is considered) is resultant of 45,172.12kg of CO₂, 57.15kg of SO₂ and 119.38kg of NO_x.

Comparison of the present system with the existing literature

Type of Hybrid energy sources	LCOE in \$/kWh	NPC in \$	Initial cost in \$	Mode of operation	Reference
PV+Wind+DG+ Battery	0.382	8.65 million	880103	Autonmous	[18]
Wind+DG+Battery	0.396	8.97 million	804750	Autonomous	[18]
PV+Biomass	0.349	6,09,524		Autonomous	[17]
PV+Biomass+DG	0.366	6,39,796		Autonomous	[17]
PV+Biomass	0.118	2,05,499		Grid connceted mode	[17]
PV+Wind+DG	0.336	5,06,503	1,02,181	Autonomous	Present system
PV+DG	0.326	4,83,115	85,668	Autonomous	Present system
PV+Wind+Grid	0.045	90,041.5	56,535	Grid connceted mode	Present system
PV+Grid	0.0323	6,44,75.09	38,535	Grid-connected mode	Present system

Conclusion

- The proposed EVCS is mathematically modeled, simulated, and the techno-economic performance of the charging station is assessed.
- The EVCS is designed for both **grid-connected mode and autonomous mode** of operation, and the optimum result obtained is presented.
- In the autonomous mode, the LCOE, NPC and operating cost is estimated at 0.326 \$/kWh, \$4,83,115 and \$85,668, while in grid connected mode LCOE, NPC and operating cost is estimated at 0.0323 \$/kWh, \$64,475.09 and \$38,535 (when Solar PV, DG and Grid is considered).
- The optimum sizing of the sources and energy produced to charge the EVs is elaborated by considering different case studies.
- The amount of **GHG** mitigation is significantly high by using a hybrid energy system.
- A significant increase in fuel cost is observed from the past few years, and the usage of electric vehicles is also increasing in all parts of the country; it is very much necessary to develop EVCS for ensuring energy security in India.

HOMER MICROGRID AND HYBRID POWER INTERNATIONAL

Thank you