

Simulation of the measured operational behavior of the existing microgrid in Cerros de Vera, Uruguay, as a basis for its future evolution

## Presenter: Natalia Bitenc

In collaboration with:

- Luis Arribas CIEMAT
- Andreo Benech UTE







## BACKGROUND

# Cerros de vera





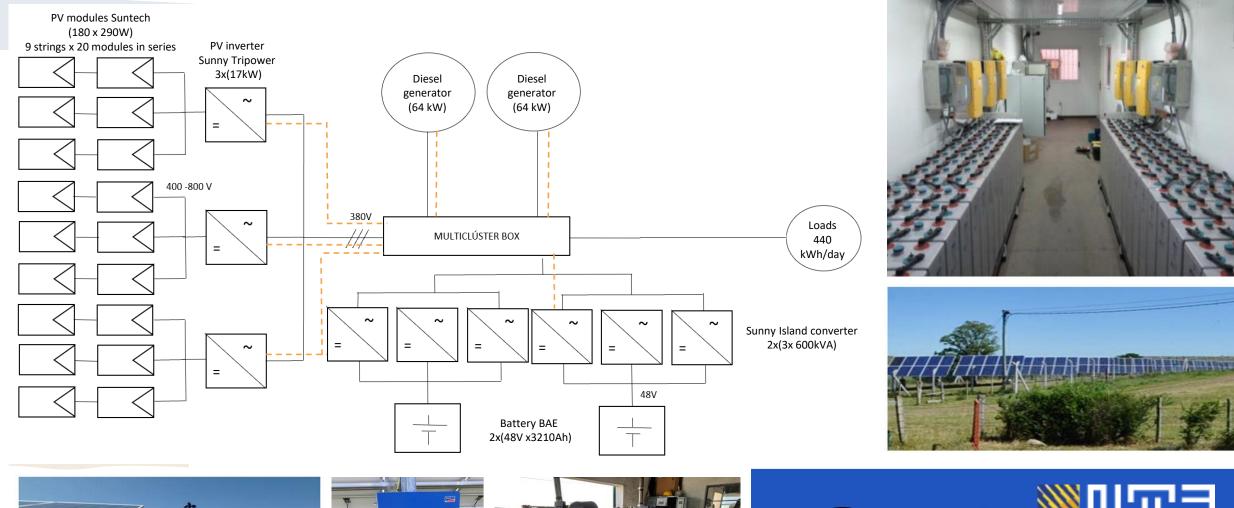
HOMER MICROGRID AND | 9<sup>TH</sup> ANNUAL
 INTERNATIONAL





# BACKGROUND

# Cerros de vera

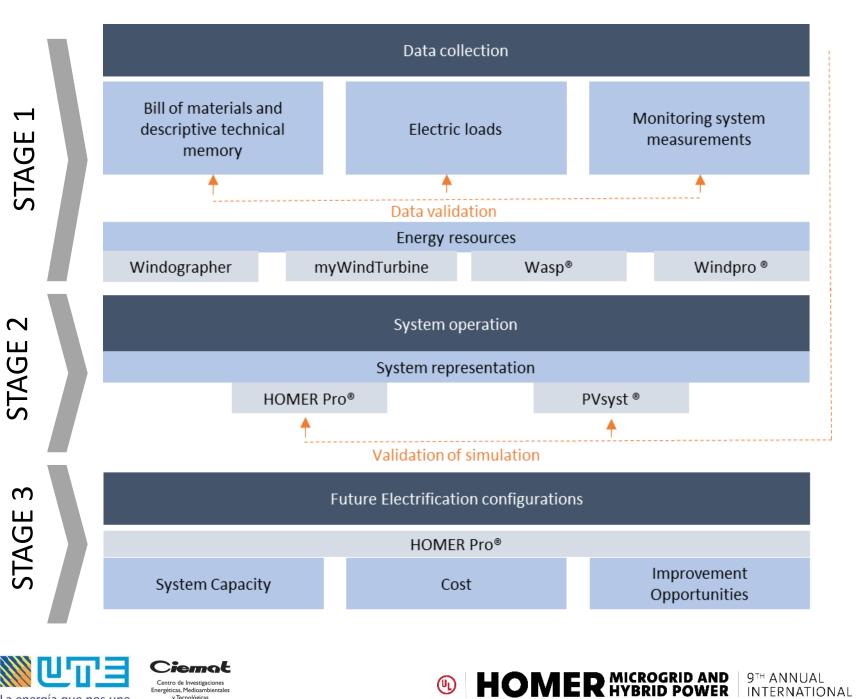

- 70 electricity home services.
- First isolated rural village in Uruguay to be supplied autonomously with renewable energy (2016).
- PV Plant + battery storage + diesel generators.

• STUDY TRIGGER: Increase in the village loads and fuel consumption has been detected.

 OBJECTIVE: Analyze the actual operation system and evaluate the inclusion of wind energy in it.



# CURRENT SYSTEM





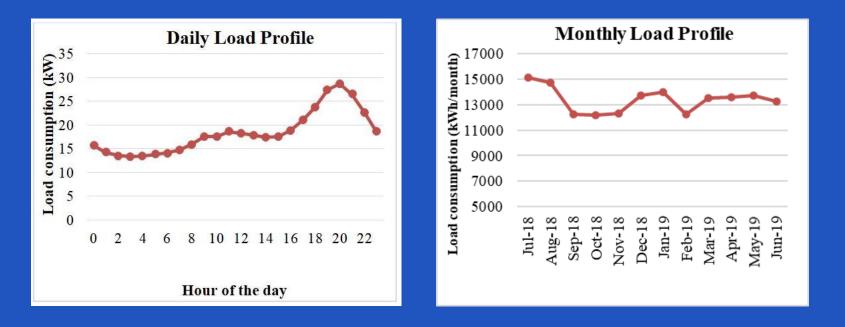



HOMER MICROGRID AND 9<sup>TH</sup> ANNUAL
 INTERNATIONAL

# METHODOLOGY



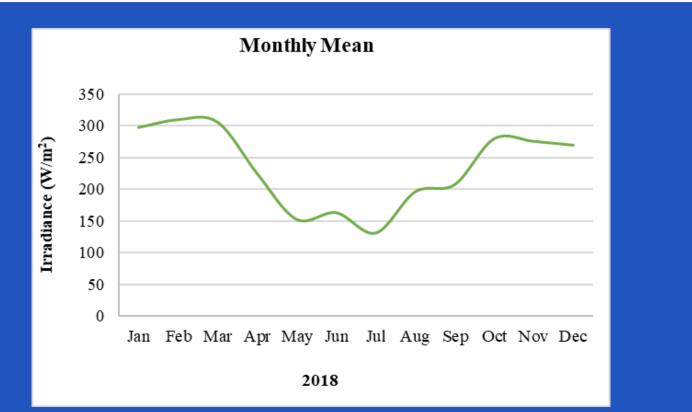
La energía que nos une


y Tecnológicas



## 1. DATA COLLECTION




## 1. DATA COLLECTION – Load Profile

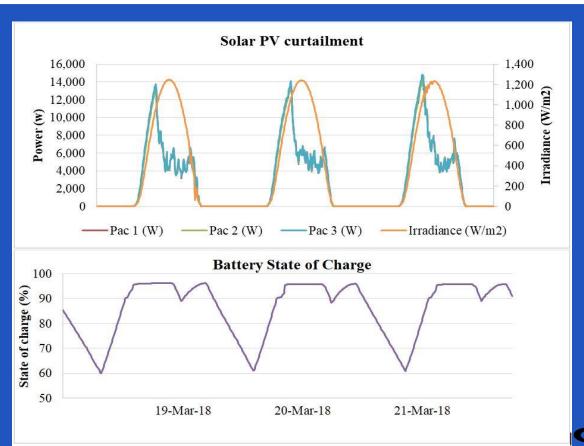


- Quite flat monthly profile
- Average hourly profile with a nighttime peak



## 1. DATA COLLECTION – Solar resource




• Solar resource obtained from the system's weather station

HOMER MICROGRID AND
 HOMER HYBRID POWER

| 9<sup>™</sup> ANNUAL INTERNATIONAL



## 1. DATA COLLECTION – System operation

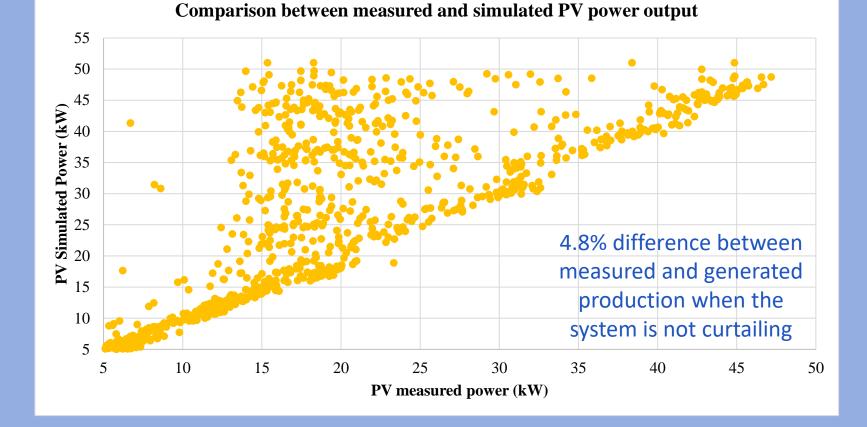


- The measured performance ratio is 77.2%
- Regulation of solar PV generation when the batteries are fully charged

HOMER MICROGRID AND | 9<sup>th</sup> ANNUAL
 INTERNATIONAL



# 2. SIMULATION OF THE OPERATION OF THE CURRENT ELECTRIFICATION SYSTEM



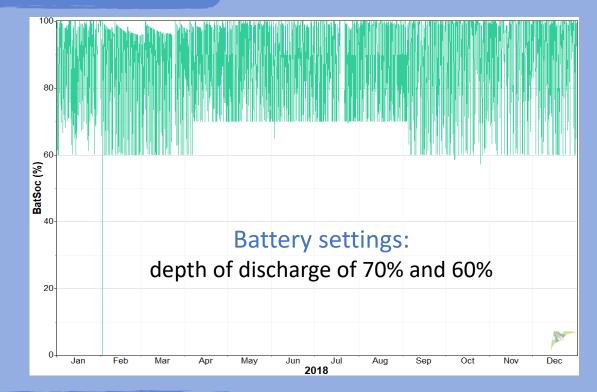

#### Photovoltaic generator

PVsyst simulation: to obtain the photovoltaic production capacity without the influence of curtailment

PVsyst simulated production 84,912 kWh/year

Measured PV production 64,403 kWh/year

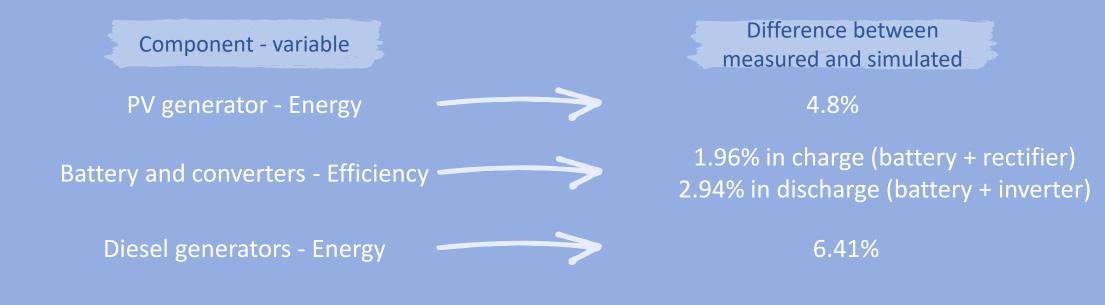





#### Battery and converters

#### Inverter and rectifier average efficiencies: 92.33% and 89.71%, respectively

#### Battery efficiency: 77.1%


Difference between measured and simulated efficiency: 1.96% in charge (battery + rectifier) and 2.94% in discharge (battery + inverter)



**Diesel Generators** 

Operation mode: "Cycle Charging" Measured energy: 22,329 kWh Simulated energy: 23,761 kWh Difference: 6.41%.









# 3. ANALYSIS OF THE INCLUSION OF WIND ENERGY















# Wind Turbine Site

- Considerations:
  - Wind resource
  - Proximity to the point of consumption and connections
  - Influence of obstacles



# Wind Turbine selection

- Cost criteria:
  - Initial capital→5000 €/kW for 10kW turbines and of 4000 €/kW for 30 kW turbines, and for the remaining sizes, the costs are interpolated.
  - Replacement cost → defined as 85% of the initial capital value.
  - Annual Operation and Maintenance cost → a value of 45.5 €/kW has been assumed for 10kW turbines and a value of 35.6 €/kW for 30 kW turbines.

| Wind Turbine    | Power<br>(kW) | Hh (m) | Initial Capital<br>(€) | Replacement<br>Cost (€) | O&M<br>(€/year) | System LCOE<br>(€/kWh) |
|-----------------|---------------|--------|------------------------|-------------------------|-----------------|------------------------|
| Bergey Excel 10 | 10            | 30     | 50,000                 | 42,500                  | 445.00          | 0.373                  |
| Gaia Wind 15    | 15            | 30     | 67,500                 | 57,375                  | 600.75          | 0.353                  |
| Eocycle E20     | 20            | 23     | 80,000                 | 68,000                  | 712.00          | 0.322                  |
| Ecocycle 25     | 25            | 23     | 87,500                 | 74,375                  | 823.25          | 0.320                  |
| PitchWind       | 30            | 30     | 90,000                 | 76,500                  | 801.00          | 0.332                  |

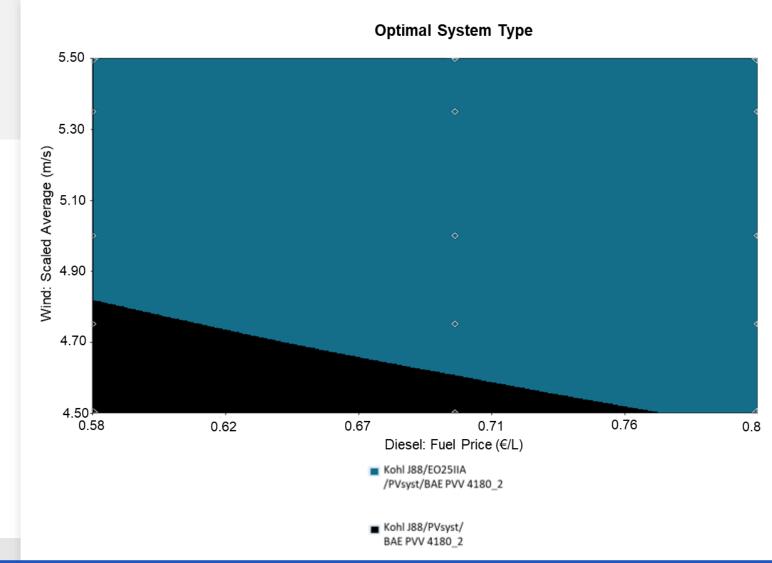


### Simulation results

#### Simulation inputs:

- Selected wind turbine
- Wind speed data
- The components of the current system and their references values

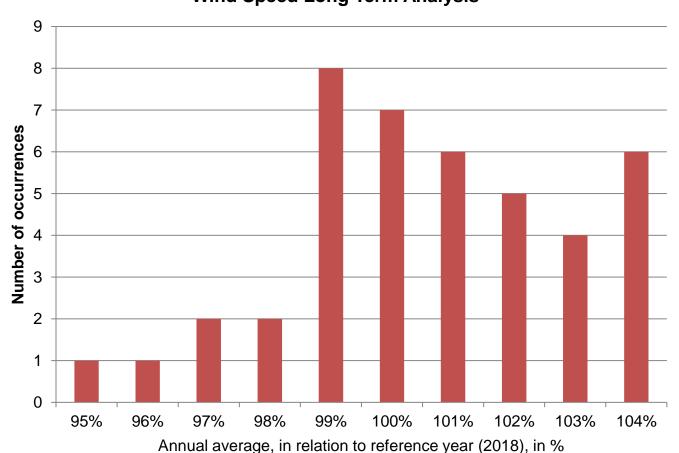
- Load consumption of the village
- PV generation without curtailment
- Diesel fuel (0.58 €/L)


| E | Export  Categorized O Overall  Left Double Click on a particular system to see its detailed Simulation Results. |          |  |             |          |                  |                  |              |              |              |                            |                        |              |              |         |                       |        |                    |                     |                     |                       |
|---|-----------------------------------------------------------------------------------------------------------------|----------|--|-------------|----------|------------------|------------------|--------------|--------------|--------------|----------------------------|------------------------|--------------|--------------|---------|-----------------------|--------|--------------------|---------------------|---------------------|-----------------------|
|   | Architecture                                                                                                    |          |  |             | Cost     |                  |                  | System       |              | Kohl J88     |                            |                        |              | PVsyst       |         |                       |        |                    |                     |                     |                       |
| + | î,                                                                                                              | <b>m</b> |  | 🔀 EO25III 🏹 | PVsyst 🍸 | Kohl J88<br>(kW) | BAE PVV 4180_2 🍸 | SMA8<br>(kW) | NPC<br>(€) ▼ | COE<br>(€) ▼ | Operating cost<br>(€/yr) € | Initial capital<br>(€) | Ren Frac 🕕 🍸 | Total Fuel V | Hours 🍸 | Production V<br>(kWh) | Fuel 🕎 | O&M Cost<br>(€/yr) | Fuel Cost<br>(€/yr) | Capital Cost<br>(€) | Productio<br>(kWh/yr) |
|   | Ē                                                                                                               | <b>m</b> |  | 🔀 1         | 1.00     | 64.0             | 48               | 36.0         | €665,304     | €0.320       | €23,924                    | €356,023               | 64.2         | 16,717       | 1,098   | 57,645                | 16,717 | 2,745              | 9,696               | 109,724             | 84,912                |
|   | Ē                                                                                                               | <b>m</b> |  | 2           | 1.00     | 64.0             | 48               | 36.0         | €769,740     | €0.370       | €38,771                    | €268,523               | 27.6         | 33,812       | 2,695   | 116,558               | 33,812 | 6,738              | 19,611              | 109,724             | 84,912                |

| Case      | NPC (%) | LCOE (€/kWh) | Fuel consumption (L/year) | Renewable Fraction (%) |  |  |
|-----------|---------|--------------|---------------------------|------------------------|--|--|
| Existing  | 100%    | 0.370        | 33,812                    | 27.6                   |  |  |
| With wind | 94.9%   | 0.320        | 16,717                    | 64.2                   |  |  |



# Sensibility analysis


- 3 parameters
  - Average wind speed: from 4.5 to 5.5 m/s (estimated value was 5.35 m/s)
  - Village consumption: increase of 5 and 15%
  - Price of fuel: from 0.58 (present value) to 0.8 €/L



La energía que nos une

# Long Term analysis

- Comparison of the annual average wind speed values to the one used for the analysis (2018's = 5.35 m/s, 100% in the Figure)
- Range is approximately ± 5% in relation to 2018
- 2018 wind data may be considered as representative and conservative



Wind Speed Long Term Analysis



#### CONCLUSION

- This analysis seeks to raise a discussion about the different scenarios and provide information for decision-making.
- As shown before, there is a wide area in the search space of the main parameters (diesel fuel cost, average wind speed and load consumption) where the installation of a 25 kW SWT seems recommendable.



## Thanks for listening!

Visit to read:

"Taking into Consideration the Inclusion of Wind Generation in Hybrid Microgrids: A Methodology and a Case Study"

Energies 2021, 14, 4082.

https://doi.org/10.3390/en14144082



HOMER MICROGRID AND | 9<sup>TH</sup> ANNUAL
 INTERNATIO





# HOMER MICROGRID AND HYBRID POWER INTERNATIONAL



9<sup>TH</sup> ANNUAL • VIRTUAL OCTOBER 12-14, 2021