
PXiSE Energy Solutions

DER-Utility Network Communication Protocol Overview

© 2021 PXiSE Energy Solutions, LLC. All copyright and trademark rights reserved. For internal use only. PXiSE is a subsidiary of Sempra Energy. PXiSE Energy Solutions, LLC is not the same company as San Diego Gas & Electric Company (SDG&E) or Southern California Gas Company (SoCalGas), and PXiSE Energy Solutions, LLC is not regulated by the California Public Utilities Commission.

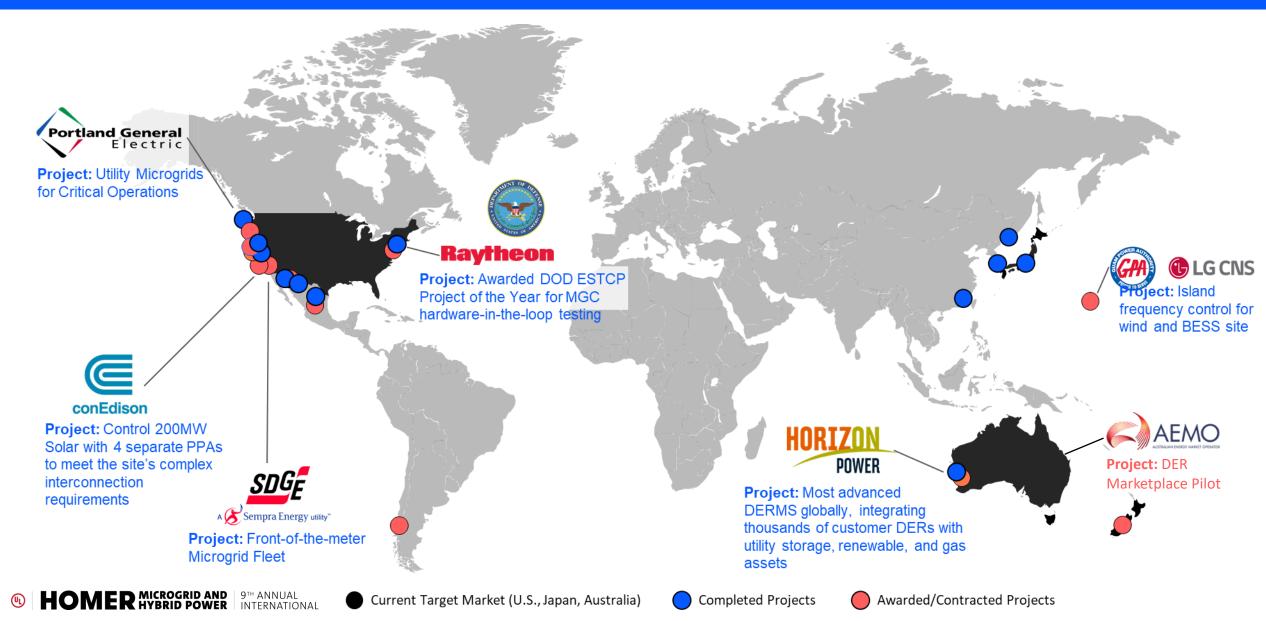
PXiSE DER Software Controls

Configurable and Scalable Solutions for the Evolving Grid

PXiSE Software-Based Control Solutions

- \rightarrow Control over 1 GW assets deployed around the world
- \rightarrow Utilize proprietary Active Control Technology (ACT) with synchrophasor data
- \rightarrow Integrate solar, wind, storage, and thermal assets for a complete control solution
- \rightarrow Real-time and independent control of real / reactive power at POI at up to 60 hz
- → Native support for over 450 energy asset and industrial communication protocols
- \rightarrow Implemented by a team with decades of utility and industrial software experience

Expert Team 100+ years of experience in utilities and software


industry-leading companies

● HOMER MICROGRID AND HOMER HYBRID POWER INTERNATIONAL

PXiSE Energy Solutions

Overview - Company

Evolving DER-Utility Landscape

PXiSE Energy Solutions

Evolving DER-Utility Landscape

Increasing DER deployments drive change in relationship between utilities and DER owners

Greater Diversity of DERs in Energy Markets

Deploying DERs in increased quantities provides end users and facility owners/operators with great flexibility, but can present challenges to utility system operators in contrast to centralized generation.

- → **Distributed** (customer-owned or non-centralized)
- → Limited dispatchability (e.g. wind, solar)
- \rightarrow **Fixed duration** of use (e.g. battery storage systems)
- → Third-party optimized systems potential black box from the perspective of a network operator or facility owner
- → Grid-tied / Island Transitioning ability to transition from fully-islanded to grid-tied modes of operation.

Competing Interests Among Stakeholders

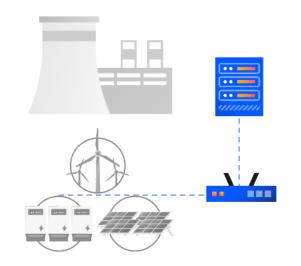
\rightarrow Utility - Grid Stability

Transmission and distribution system operators want increased levels of control over customer-sited resources that may interact with their grid infrastructure

\rightarrow Customer - Grid Independence

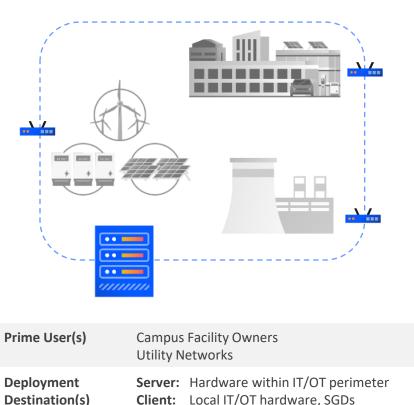
Customers and C&I clients wish to have more control of their energy assets and consumption without being beholden to distribution/transmission system operators

Fragmentation of how DERs are communicated to is a natural result of these competing interests and evolving market trends - driving a need for more standardized communication methods.


Typical System Architecture Schemes

Sending information between Utilities / Aggregators and DERs

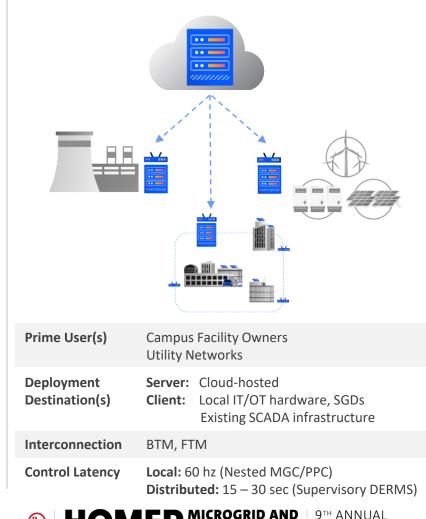
PXISE Energy Solutions


INTERNATIONAL

Single-Site Communication

Prime User(s)	C&I Facilities, Utility Microgrid Owners	
Deployment Destination(s)	 Existing on-premises network Dedicated PLC/ Server Existing SCADA infrastructure 	
Interconnection	BTM, FTM	
Control Latency Required	Up to 60 hz+	

Aggregated Network Communication



Existing SCADA infrastructure

Distributed: 15 – 30 sec (Supervisory DERMS)

Local: 60 hz (Nested MGC/PPC)

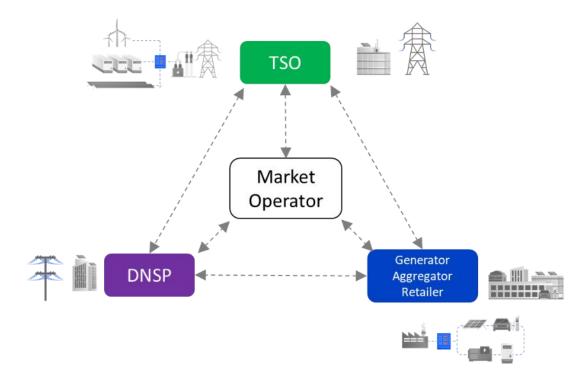
Hybrid Cloud/Edge Communication

These examples are for illustrative purposes only - many applications require project-specific configuration

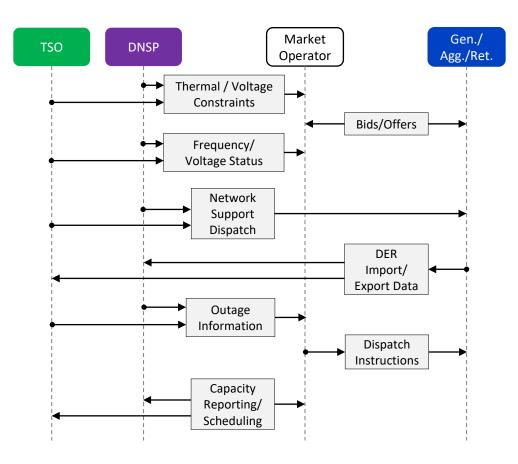
Interconnection

Control Latency

BTM, FTM



Information Exchanges


Simple and Complex Data Exchanges Between Utilities and DERs

Sample Communication Throughout Market

Note: In many markets, one entity performs multiple functions (e.g. TSO & Market Operator, Generator & DNSP)

Unidirectional and bi-directional data exchanges between multiple market participants are occurring constantly at both fixed intervals and in real time

Information Exchanges

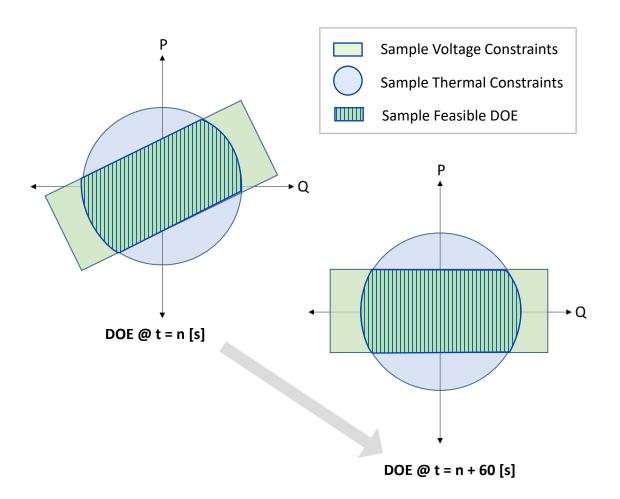
Sample Data Exchanged Between Utilities and DERs

Standard Data Types

Information exchanged between utility networks, system operators, aggregators, and DERs typically consists of simple instances of the most common data types:

• Integers

- Booleans
- Floating-point
- Date-Time


• Strings

Lists/Arrays

Many utility networks and system operators are beginning to require complex communications when approaching setting operational boundaries on DERs – such as deploying **Dynamic Operating Envelopes (DOEs)** for assets participating on their network.

These n-dimensional DOEs impose a series of operational constraints on assets at a series of fixed time intervals and include a variety of constraints.

Complex – Dynamic Operating Envelope Constraints

Protocols in DER-Utility Communications

PXISE Energy Solutions

Utility-DER Communication Protocols

Overview of Common and Contemporary Protocols

Analogy from 1990s-2000s:

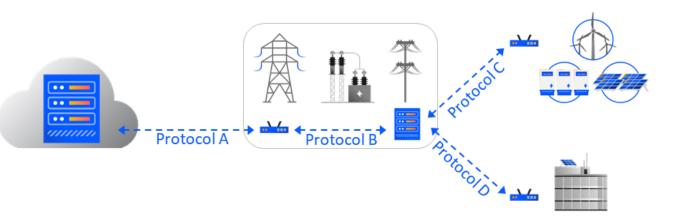
Protocol and language fragmentation of the early internet (each playing different roles):

- TCP/IP
- Http
- AppleTalk
- Java

Flash

- FTP
- SMTP

Different protocols are often "layered" together along an end-to-end communications chain in order for a command to have a desired output.


Communication occurring between devices requiring conversion between other protocols are carefully considered.

Different stakeholders utilize different communication protocols:

PXiSE

Energy Solutions

- System/Network operators
- Control software developers
- SCADA hardware providers
- Data logging/historian databases
- Asset Hardware manufacturers

Utility-DER Communication Protocols

Overview of Common and Contemporary Protocols

Many protocols to cover within the scope of this discussion notable exclusions include:

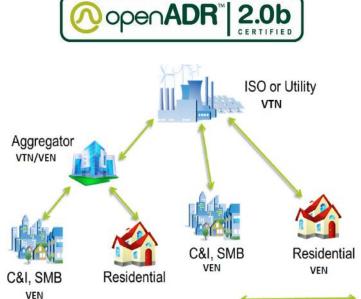
- Modbus (Sunspec)
- DNP3
- ASHRAE BACnet
- Proprietary SCADA/EMS protocols
- Proprietary transactive energy / identity verification protocols

The strengths/weaknesses of these protocols are documented extensively online, and not all focus exclusively on Utility-DER communications

PXISE Energy Solutions

OpenADR 2.0

Origin


- Initially development by LBNL/CEC in 2002
- First commercial applications in CAISO in 2007 and official specification for DR programs in 2009
- Expansion into DERs, EVs, dynamic pricing, etc. beginning in early 2010s

Common Use Cases

- Coordinating portfolios of DERs for participation in market programs such as demand response via internet
- Facilitating resource performance and availability reporting between aggregators and utilities / system operators
- Responding to real-time pricing events for market programs

Model Structure

- Structured into Virtual Top Nodes (VTNs) and Virtual End Nodes (VENs)
- VTNs:
 - Manage resource portfolio
 - Create/Transmit events
- VENs:
 - Receives event instruction
 - Dispatches DERs
- A single entity can perform both VTN and VEN functionalities – e.g. an aggregator receiving a signal from a TSO and dispatching downstream assets
- Relies upon aggregators or gateways to directly control generation / storage assets

OpenADR 2.0 link

[OpenADR Alliance]

PG&E

SDG&E

SCE

Notable Adopters

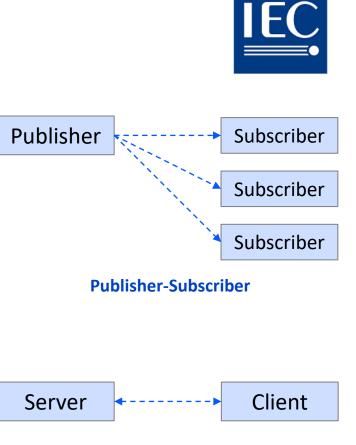
- Austin Energy
- HECO

٠

- NV Energy
- National Grid SMUD
- HOMER MICROGRID AND 9TH ANNUAL
 INTERNATIONAL

IEC 61850

Origin


- Initially development by EPRI/UCA in 1989
- Standardization formalized in approximately 1995
- Driven by need to standardize communication between assets with object-based model

Common Use Cases

- Initially developed to enable fast control of substation equipment
- Reporting, logging, and retrieving status data from equipment containing processorbased controllers
- Capabilities to control assets beyond substation equipment gradually implemented over time

Model Structure

- Object-oriented class model divided into:
 - **Devices** containing multiple nodal functions
 - Nodes performing specific functions on data
- A device (e.g. substation equipment) will have multiple nodes, and nodal functions are defined extensively within the IEC 61850 standard
- Supports multiple communication styles:
 - Generic Object-Oriented Substation Event (GOOSE)-based scheme allows for a single publisher/multiple subscriber commands
 - Manufacturing Message Specification (MMS) utilizes a client-server model where authorized clients request data from the server
- Control occurs over ethernet and TCP/IP

Client-Server

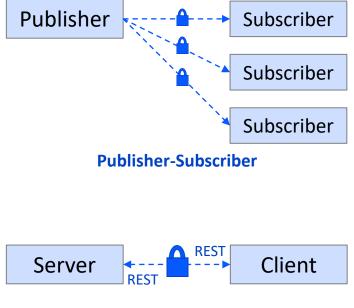
INTERNATIONAL

ER MICROGRID AND HYBRID POWER

IEEE 2030.5

Origin

- Initially development by ZigBee Alliance in 2007
- Formally became IEEE standard in 2013
- Developed by a wide range of hardware manufacturers, utilities, and energy providers to develop a unified communication protocol across devices


Common Use Cases

- Initially developed to facilitate integrated control of a wide range of utility assets, DERs, and C&I equipment
- Integrates control schemes for, market signals, system services, and direct device control
- Support for complex command functionality, such as dynamic operating envelopes (DOEs)

Model Structure

- Data model derived from IEC 61850 and leverages similar classes
- Utilizes representational state transfer (REST) client-server architecture
- Expansive list of pre-defined functions for:
 - Utility network operations
 - Direct DER control
 - Energy market transactions
 - Aggregated resource portfolios
- Encrypted and approved access control list methodology with security certificates between parties
- Support for direct device control required for CA Rule 21 Smart Inverter
- Similar to IEC 61850, supports both publisher/subscriber and server-authorized client communication
- Control occurs over ethernet and TCP/IP

Client-Server

Side-by-Side Comparison

	OpenADR 2.0	IEC 61850	IEEE 2030.5
Primary Use Case	Dispatching and related reporting portfolios of DER assets within a market	Fast communication for substation equipment	Providing control to a wide range of individual energy devices and portfolios in response to grid & market conditions
Model Structure	Top/Bottom nodes cascade commands	Object-oriented model of classes and nodes	Object-oriented model of classes and nodes
Communication Medium	Internet	Ethernet, TCP/IP	Internet
Target Users	T/DSPs, Aggregators	T/DSPs	T/DSPs, Aggregators, Generators, Asset owners/operators
Direct Asset Control	No	Yes	Yes
Primary Assets Supported	Portfolios of aggregated resources	Substation equipment with extensions for DERs	Individual DERs through portfolios/ large aggregations of assets
Embedded Market Participation Functionality	 Real-time pricing Dispatched events (e.g. DR) 	N/A; capabilities come from separate control source	 Real-time / DA market Capacity Market Services Ancillary Services Dispatched events (e.g. DR)
Advanced Transactive Grid Features	Extensible to support some 2030.5 features,	N/A	Dynamic Operating EnvelopesCA Rule 21 Compliant

[Source: QualityLogic - Simpson, Kang, Mater; OpenADR Alliance]

Brief Case Study: Horizon Power and PXiSE DERMS

Distributed Energy Resource Management System

PXiSE Energy Solutions

Horizon Power DERMS + Onslow Microgrid

PXISE Energy Solutions

Onslow Microgrid

Transition diesel-powered remote community to a highly-renewable 11MW microgrid with:

- → 8 1-MW natural gas-fueled generators
- → 1 1-MW diesel-fueled generator
- \rightarrow 1 MW solar power generation (several hundred customer assets)
- \rightarrow 2 MW/1.25 MWh battery storage
- → High-Speed Microgrid Controller

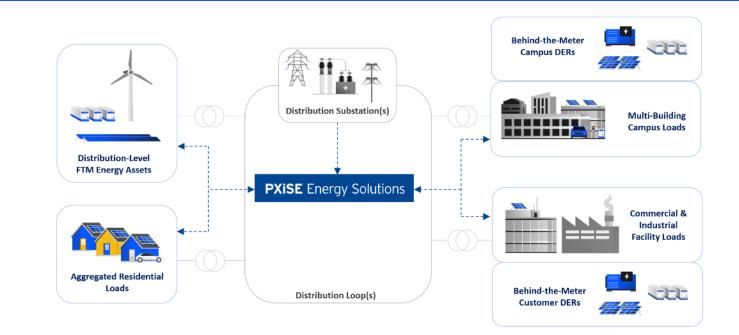
Customer Motivations

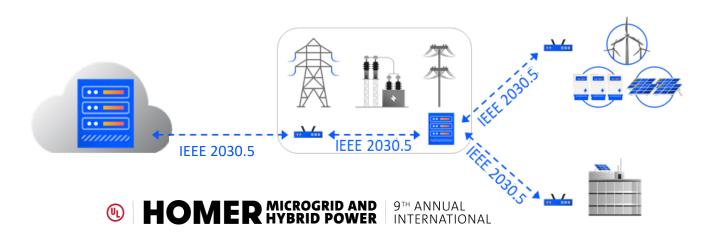
- → Providing reliability and stability across the utility's vast territory while enabling 4x increase in renewable hosting capacity for customers
- → Reducing annual fossil fuel consumption and costs by enabling peak renewable production of 90%+

Technical Objective

→ Deploy network-wide DERMS to coordinate 50,000 customer DERs with utility assets

Read More: https://www.canarymedia.com/articles/a-renewable-and-battery-only-microgrid-the-holy-grail-of-clean-energy/





Horizon Power + PXiSE DERMS

Deployed System Performance

- → Acts as a supervisory controller to downstream high-speed control systems such as microgrids, large C&I facilities, and EV fleet charging systems
- → Controlled hundreds of DERs across 250+ customer sites
- → Remotely communicates with and controls DERs quickly and securely
- → Mitigates intermittency and coordination challenges by optimizing the energy mix throughout the distribution circuit(s) controlled
- → Flexibly integrates with distribution and transmission system network systems for streamlined control and market participation

References

- [1] Simpson, Kang and Mater, "IEC 61850 and IEEE 2030.5: A Comparison of 2 Key Standards for DER Integration An update," QualityLogic.
- [2] openADR Alliance, "DER Control and How to Implement Smart Inverter Management with OpenADR".
- [3] openADR Alliance, "How OpenADR can Compare with IEEE 2030.5 for California Rule 21".
- [4] L. Blackhall, "On the Calculation and Use of Dynamic Operating Envelopes," Battery Storage and Grid Integration Program, Australian National University.

The views and opinions expressed in this work are those of the author's and do not represent the official position of UL

INTERNATIONAL

