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PXiSE DER 

Software 

Controls

PXiSE Software-Based Control Solutions

→ Control over 1 GW assets deployed around the world 

→ Utilize proprietary Active Control Technology (ACT) with synchrophasor data

→ Integrate solar, wind, storage, and thermal assets for a complete control solution

→ Real-time and independent control of real / reactive power at POI at up to 60 hz

→ Native support for over 450 energy asset and industrial communication protocols

→ Implemented by a team with decades of utility and industrial software experience

Configurable and Scalable

Solutions for the Evolving Grid



Overview - Company

Project: DER 
Marketplace Pilot 
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Evolving DER-Utility Landscape

→ Distributed (customer-owned or non-centralized)

→ Limited dispatchability (e.g. wind, solar)

→ Fixed duration of use (e.g. battery storage systems)

→ Third-party optimized systems – potential black 

box from the perspective of a network operator or 

facility owner

→ Grid-tied / Island Transitioning - ability to transition 

from fully-islanded to grid-tied modes of operation.

→ Utility - Grid Stability

Transmission and distribution system operators want 

increased levels of control over customer-sited resources 

that may interact with their grid infrastructure

→ Customer - Grid Independence

Customers and C&I clients wish to have more control of their 

energy assets and consumption without being beholden to 

distribution/transmission system operators

Increasing DER deployments drive change in relationship between utilities and DER owners

Competing Interests Among Stakeholders

Fragmentation of how DERs are communicated to is a 
natural result of these competing interests and evolving 
market trends - driving a need for more standardized 
communication methods.

Greater Diversity of DERs in Energy Markets

Deploying DERs in increased quantities provides end 
users and facility owners/operators with great flexibility, 
but can present challenges to utility system operators in 
contrast to centralized generation.



Typical System Architecture Schemes

Single-Site Communication Aggregated Network Communication Hybrid Cloud/Edge Communication

Prime User(s) C&I Facilities, 
Utility Microgrid Owners

Deployment 
Destination(s)

• Existing on-premises network
• Dedicated PLC/ Server
• Existing SCADA infrastructure

Interconnection BTM, FTM

Control Latency 
Required

Up to 60 hz+

Prime User(s) Campus Facility Owners
Utility Networks

Deployment 
Destination(s)

Server:   Hardware within IT/OT perimeter
Client:    Local IT/OT hardware, SGDs

Existing SCADA infrastructure

Interconnection BTM, FTM

Control Latency Local: 60 hz (Nested MGC/PPC)
Distributed: 15 – 30 sec (Supervisory DERMS)

Prime User(s) Campus Facility Owners
Utility Networks

Deployment 
Destination(s)

Server:   Cloud-hosted
Client:    Local IT/OT hardware, SGDs

Existing SCADA infrastructure

Interconnection BTM, FTM

Control Latency Local: 60 hz (Nested MGC/PPC)
Distributed: 15 – 30 sec (Supervisory DERMS)

These examples are for illustrative purposes only – many applications require project-specific configuration

Sending information between Utilities / Aggregators and DERs



Information Exchanges
Simple and Complex Data Exchanges Between Utilities and DERs

Sample Communication Throughout Market

Note: In many markets, one entity performs multiple functions 
(e.g. TSO & Market Operator, Generator & DNSP) 

TSO DNSP
Market 

Operator
Gen./ 

Agg./Ret.

Thermal / Voltage
Constraints

Bids/Offers

DER 
Import/

Export Data

Network 
Support 
Dispatch

Capacity 
Reporting/ 
Scheduling

Dispatch 
Instructions

Outage 
Information

Unidirectional and bi-directional data exchanges between 
multiple market participants are occurring constantly at both 
fixed intervals and in real time

Frequency/ 
Voltage Status



Information Exchanges

Information exchanged between utility networks, system 

operators, aggregators, and DERs typically consists of simple 

instances of the most common data types:

Complex – Dynamic Operating Envelope ConstraintsStandard Data Types

• Booleans

• Date-Time

• Lists/Arrays

• Integers

• Floating-point

• Strings

Many utility networks and system operators are beginning to 

require complex communications when approaching setting 

operational boundaries on DERs – such as deploying Dynamic 

Operating Envelopes (DOEs) for assets participating on their 

network.

These n-dimensional DOEs impose a series of operational 

constraints on assets at a series of fixed time intervals and 

include a variety of constraints.

Sample Data Exchanged Between Utilities and DERs

DOE @ t = n [s]

DOE @ t = n + 60 [s]

Sample Voltage Constraints

Sample Thermal Constraints

Sample Feasible DOE

[Source: Blackhall, L. – On the Calculation and Use of Dynamic Operating Envelopes]



Protocols in 

DER-Utility 

Communications



Different stakeholders utilize different communication 

protocols:

• System/Network operators

• Control software developers

• SCADA hardware providers

• Data logging/historian databases

• Asset Hardware manufacturers

Analogy from 1990s-2000s:

Protocol and language fragmentation of the early 

internet (each playing different roles):

• TCP/IP
• AppleTalk
• FTP
• SMTP

• Http
• Java
• Flash

Different protocols are often “layered” together along an 
end-to-end communications chain in order for a 
command to have a desired output. 

Communication occurring between devices requiring 
conversion between other protocols are carefully 
considered.

Utility-DER Communication Protocols
Overview of Common and Contemporary Protocols



Utility-DER Communication Protocols

Many protocols to cover within the scope of this discussion 

notable exclusions include:

• Modbus (Sunspec)

• DNP3

• ASHRAE BACnet

• Proprietary SCADA/EMS protocols

• Proprietary transactive energy / identity verification 

protocols

The strengths/weaknesses of these protocols are 

documented extensively online, and not all focus 

exclusively on Utility-DER communications

Overview of Common and Contemporary Protocols

Focus of Discussion

• OpenADR 2.0

• IEC 61580

• IEEE 2030.5



OpenADR 2.0

Origin Model Structure

Common Use Cases

Notable Adopters

• Initially development by LBNL/CEC in 2002

• First commercial applications in CAISO in 
2007 and official specification for DR 
programs in 2009

• Expansion into DERs, EVs, dynamic pricing, 
etc. beginning in early 2010s

• Coordinating portfolios of DERs for 
participation in market programs such as 
demand response via internet

• Facilitating resource performance and 
availability reporting between aggregators 
and utilities / system operators

• Responding to real-time pricing events for 
market programs

• Structured into Virtual Top Nodes (VTNs) and 
Virtual End Nodes (VENs)

• VTNs:
• Manage resource portfolio
• Create/Transmit events

• VENs:
• Receives event instruction
• Dispatches DERs

• A single entity can perform both VTN and VEN 
functionalities – e.g. an aggregator receiving a 
signal from a TSO and dispatching downstream 
assets

• Relies upon aggregators or gateways to directly 
control generation / storage assets

[OpenADR Alliance]

• Austin Energy
• HECO
• NV Energy
• National Grid

• PG&E
• SCE
• SDG&E
• SMUD

[Source OpenADR Alliance]



IEC 61850

Origin Model Structure

Common Use Cases

• Initially development by EPRI/UCA in 1989

• Standardization formalized in 
approximately 1995

• Driven by need to standardize 
communication between assets with 
object-based model

• Initially developed to enable fast control of 
substation equipment

• Reporting, logging, and retrieving status 
data from equipment containing processor-
based controllers

• Capabilities to control assets beyond 
substation equipment gradually 
implemented over time

• Object-oriented class model divided into:

• Devices containing multiple nodal functions

• Nodes performing specific functions on data

• A device (e.g. substation equipment) will have 
multiple nodes, and nodal functions are defined 
extensively within the IEC 61850 standard

• Supports multiple communication styles:

• Generic Object-Oriented Substation Event 
(GOOSE)-based scheme allows for a single 
publisher/multiple subscriber commands

• Manufacturing Message Specification (MMS)
utilizes a client-server model where 
authorized clients request data from the 
server

• Control occurs over ethernet and TCP/IP

[Source: QualityLogic - Simpson, Kang, Mater]

Publisher Subscriber

Subscriber

Subscriber

Server Client

Publisher-Subscriber

Client-Server



IEEE 2030.5

Origin Model Structure

Common Use Cases

• Initially development by ZigBee Alliance in 
2007

• Formally became IEEE standard in 2013

• Developed by a wide range of hardware 
manufacturers, utilities, and energy providers 
to develop a unified communication protocol 
across devices

• Initially developed to facilitate integrated 
control of a wide range of utility assets, 
DERs, and C&I equipment

• Integrates control schemes for, market 
signals, system services, and direct device 
control

• Support for complex command functionality, 
such as dynamic operating envelopes (DOEs)

• Data model derived from IEC 61850 and 
leverages similar classes

• Utilizes representational state transfer (REST) 
client-server architecture

• Expansive list of pre-defined functions for:

• Utility network operations

• Direct DER control

• Energy market transactions

• Aggregated resource portfolios

• Encrypted and approved access control list 
methodology with security certificates between 
parties

• Support for direct device control required for CA 
Rule 21 Smart Inverter

• Similar to IEC 61850, supports both 
publisher/subscriber and server-authorized 
client communication

• Control occurs over ethernet and TCP/IP[Source: QualityLogic - Simpson, Kang, Mater]

Publisher Subscriber

Subscriber

Subscriber

Server Client
REST

REST

Publisher-Subscriber

Client-Server



Side-by-Side Comparison

OpenADR 2.0 IEC 61850 IEEE 2030.5

Primary Use Case Dispatching and related reporting  
portfolios of DER assets within a market

Fast communication for substation 
equipment

Providing control to a wide range of 
individual energy devices and portfolios 
in response to grid & market conditions

Model Structure Top/Bottom nodes cascade commands Object-oriented model of classes and 
nodes

Object-oriented model of classes and 
nodes

Communication Medium Internet Ethernet, TCP/IP Internet

Target Users T/DSPs, Aggregators T/DSPs T/DSPs, Aggregators, Generators, 
Asset owners/operators

Direct Asset Control No Yes Yes

Primary Assets Supported Portfolios of aggregated resources Substation equipment with extensions 
for DERs

Individual DERs through portfolios/ 
large aggregations of assets

Embedded Market 
Participation Functionality

• Real-time pricing
• Dispatched events (e.g. DR)

N/A; capabilities come from separate 
control source

• Real-time / DA market 
• Capacity Market Services
• Ancillary Services
• Dispatched events (e.g. DR)

Advanced Transactive Grid 
Features

Extensible to support some 2030.5 
features,

N/A • Dynamic Operating Envelopes
• CA Rule 21 Compliant

[Source: QualityLogic - Simpson, Kang, Mater; OpenADR Alliance]



Distributed Energy Resource Management System

Brief Case Study: 
Horizon Power and 
PXiSE DERMS



Horizon 
Power 
DERMS + 
Onslow 
Microgrid

Onslow Microgrid

Transition diesel-powered remote community to a highly-renewable 

11MW microgrid with:

→ 8 1‐MW natural gas‐fueled generators

→ 1 1‐MW diesel‐fueled generator

→ 1 MW solar power generation (several hundred customer assets)

→ 2 MW/1.25 MWh battery storage

→ High‐Speed Microgrid Controller

Customer Motivations

→ Providing reliability and stability across the utility’s vast territory while 

enabling 4x increase in renewable hosting capacity for customers 

→ Reducing annual fossil fuel consumption and costs by enabling peak 

renewable production of 90%+

Technical Objective

→ Deploy network-wide DERMS to coordinate 50,000 customer DERs 

with utility assets

Read More: https://www.canarymedia.com/articles/a-renewable-and-
battery-only-microgrid-the-holy-grail-of-clean-energy/



Horizon Power + PXiSE DERMS

→ Acts as a supervisory controller to downstream 

high-speed control systems such as microgrids, 

large C&I facilities, and EV fleet charging 

systems

→ Controlled hundreds of DERs across 250+ 

customer sites

→ Remotely communicates with and controls 

DERs quickly and securely

→ Mitigates intermittency and coordination 

challenges by optimizing the energy mix 

throughout the distribution circuit(s) controlled

→ Flexibly integrates with distribution and 

transmission system network systems for 

streamlined control and market participation

Deployed System Performance

IEEE 2030.5
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