

Varied Business Models for the Varied Regulatory Landscape

Katie Bell, Cummins, Inc.

October 2020

Public

Powering a more prosperous world in 2019

190

Countries & territories

Global employees

61,615

Engines built in 2019

1.4M+

8,000

Wholly-owned & independent distributor & dealer locations **\$1B**

Invested in research & development in 2019

100

Years of industry leadership

As published in the 2019 10K found on cummins.com

H MER International MICROGRID Conference | 8th Annual | #HIMC2020

Five operating segments

Cummins has a 100-year-long track record of delivering leading power solutions. As we look ahead, we know our industries and markets will continue to change, and we are committed to bringing our customers the right technology at the right time.

Fundamentals; Utility programs and tariffs

- Utility programs are typically written in tariffs so the terms can be used interchangeably
- Programs and tariffs can be in the form of demand response, special pricing in a rate tariff such as critical peak pricing or real time pricing, rebates
- Utility programs and tariffs can also be rules and protocols for establishing utility service, interconnection, or compliance requirements for taking utility service

Incentivizing different behaviors to optimize costs of the "system"

Ratemaking

<text><text><text>

Bucket of costs Operating expense + ("utility assets" – Depreiciation)rate of return = Revenue Requirement Filling the bucket Ratemaking

HICROGRID Conference | 8th Annual | #HIMC2020

Case Study – incentivizing different behaviors

Price Signals (South Africa)

Season	High-demand		Low-demand			
Period	Peak	Standard	Off-Peak	Peak	Standard	Off-Peak
1) Existing ratios	8.00	2.31	1.18	2.50	1.67	1.00
2) Existing WEPS existing TOU ratios c/kWh	296.43	89.79	48.77	96.73	66.55	42.23
3) Updated CTS WEPS existing TOU ratios c/kWh	349.70	100.97	51.58	109.28	73.00	43.71
4) New ratios	6.00	1.50	1.00	2.49	1.40	1.00
5) Existing WEPS new TOU ratios c/kWh	253.40c	63.35c	42.23c	105.16c	59.13c	42.23c
6) Updated CTS WEPS new TOU ratios c/kWh	304.82c	76.20c	50.80c	126.50c	71.13c	50.80c
7) Difference between current and new ratios c/kWh	8.39c	-13.59c	2.03c	29.77c	4.58c	8.57c
8) Difference existing WEPS vs New CTS TOU c/kWh	53.27c	11.18c	2.81c	12.55c	6.45c	1.48c

Proposed new TOU Time Periods

Peak = 1 Standard = 2 Off-peak = 3 **Regulations (Massachusetts)**

Optimize Your Energy Use with Storage

Earn incentives for helping reduce peak demand and carbon emissions with energy storage

Rand conversion to USD = .06

Generation can augment behavior

Solar Generation & Load Curve over 24-hours

Massachusetts Example

2020 Baseline - Grid power + SESS

125 kW / 250 kWh SESS

Program	Annualized Energy Savings
Energy Bill Demand Reduction	9%
Utility Storage Demand Response	22%
Total Energy Savings:	31%

Annual Energy Generation

Production	kWh/yr	%
Grid Purchases	449,977	100
Total	449,977	100

Consumption	kWh/yr	%
AC Primary Load	438,000	100
Total	438,000	100

Quantity	kWh/yr	%
Excess Electricity	0	0

Quantity	Value	Units	
Renewable Fraction	0	%	
Max. Renew. Penetration	0	%	

Example single day load profile and asset response

System Operation Notes

- SESS operates as peak shaving asset
- SESS charging takes place as demand lowers

Solar Option 1 - Grid power + SESS + Roof-mounted PV

125 kW / 250 kWh SESS + 111 kW PV + Cummins Control

Massachusetts Programs	Annualized Energy Savings
Energy Bill Demand Reduction	9%
Utility Storage Demand Response	28%
Solar Net Metering & Incentive	74%
Total Energy Savings	105%

Annual Energy Generation

Production	kWh/yr	%
Generic flat plate PV	142,769	31.9
Grid Purchases	305,451	68.1
Total	448,220	100

kWh/yr	%
438,000	99.3
3,149	0.714
441,149	100
	kWh/yr 438,000 3,149 441,149

C	uantity k	Wh/yr	%
E	Excess Electricity	D	0
Quan	tity	Value	Units
	ushle Erection	30.8	%
Rene	wable Flaction	50.0	

Example single day load profile and asset response

System Operation Notes

- SESS and PV operate as peak shaving assets
 - During higher solar production, PV alone can peak shave
- SESS charging takes place as demand lowers
 - During high PV/low load, SESS charges from PV

Solar Option 2 - Grid power + SESS + Roof and Carport PV

125 kW / 250 kWh SESS + 217 kW PV + Cummins Control

Program	Annualized Energy Savings
Energy Bill Demand Reduction	9%
Utility Storage Demand Response	22%
Solar Net Metering & Incentive	81%
Storage adder	14%
Total Energy Savings	126%

Annual Energy Generation

Production	kWh/yr	%	Consumption	kWh/yr	%
Generic flat plate PV	279,106	58.0	AC Primary Load	438,000	93.3
Grid Purchases	202,114	42.0	Grid Sales	31,467	6.70
Total	481,220	100	Total	469 <mark>,4</mark> 67	100

Utility

PV

70

60

Quanti	ty k	Wh/yr	%
Excess Electricity 0		1	0
Quantity		Value	Units
Renewable	Fraction	56.9	%
Max. Renew	Penetration	1,928	%

Monthly Average Electric Production

Example single day load profile and asset response

System Operation Notes

- PV functions as close to stand-alone peak shaving asset
 - High solar production will out-produce load
- SESS has enough residual charge to cover early morning load

H MER International MICROGRID Conference 8th Annual #HIMC2020

South Africa Example

Johannesburg 2020 Baseline - Grid power + PV

Site will have grid access, 600 kW PV, and (2) 1 MW backup diesel gensets

South Africa Programs	Annualized Energy Savings
Solar Energy Bill Reduction (w/export rate)	40%
Total Energy Savings	40%

Annual Energy Generation

Production	kWh/yr	%
Generic flat plate PV	1,063,247	63.8
CMI C1400 D5 (1)	5,000	0.300
CMI C1400 D5 (2)	0	0
Grid Purchases	597,183	35.9
Total	1,665,430	100

Consumption	kWh/yr	%
AC Primary Load	1,241,000	100
DC Primary Load	0	0
Deferrable Load	0	0
Total	1,241,000	100

Quantity	kWh/yr	%
Excess Electricity	424,430	25.5
Unmet Electric Load	0	0
Capacity Shortage	0	0

Quantity	Value	Units
Renewable Fraction	51.5	%
Max. Renew. Penetration	1,501	%

Example single day load profile and asset response

System Operation Notes

- PV covers the daytime load from late morning to early evening
- Excess solar is sold back to the grid in this model

Johannesburg Energy System Option 1- Grid power + PV + SESS

Proposal to add 125 kW / 250 kWh Stationary Energy Storage System to existing assets

South Africa Programs	Annualized Energy Savings
Solar Energy Bill Reduction (w/export rate)	40%
Storage Savings (onsite solar use)	5%
Total Energy Savings	45%

Annual Energy Generation

Generic flat plate PV 1,063,	247 64.2
CMI C1400 D5 (1) 3,250	0.196
CMI C1400 D5 (2) 0	0
Grid Purchases 590,59	35.6
Total 1,657,0	091 100

Consumption	kWh/yr	%
AC Primary Load	1,241,000	100
DC Primary Load	0	0
Deferrable Load	0	0
Total	1,241,000	100

Quantity	kWh/yr	%
Excess Electricity	406,050	24.5
Unmet Electric Load	0	0
Capacity Shortage	0	0

Quantity	Value	Un
Renewable Fraction	52.1	%
Max. Renew. Penetration	1,501	%

Example single day load profile and asset response

System Operation Notes

- SESS during late night/early morning hours
- SESS charging takes place from both grid and PV

Johannesburg Energy System Option 2 - Grid power + PV + SESS

Proposal to add 250 kW / 500 kWh Stationary Energy Storage System to existing assets

South Africa Programs	Annualized Energy Savings
Solar Energy Bill Reduction (w/export rate)	40%
Storage Savings (onsite solar use)	5%
+Larger Battery	2%
Total Energy Savings	47%

Annual Energy Generation

Production	kWh/yr	%
Generic flat plate PV	1,063,247	64.6
CMI C1400 D5 (1)	557	0.0338
CMI C1400 D5 (2)	0	0
Grid Purchases	581,778	35.4
Total	1,645,582	100

PV

Consumption	kWh/yr	%
AC Primary Load	1,241,000	100
DC Primary Load	0	0
Deferrable Load	0	0
Total	1,241,000	100

Quantity	k٧	Vh/yr	%
Excess Electricity	39	0,577	23.7
Unmet Electric Load	0		0
Capacity Shortage	0		0
Quantity		Value	Uni
Renewable Fraction		53.1	%
Max, Renew, Penetratio	on	1,501	%

Example single day load profile and asset response

System Operation Notes

- SESS during late night/early morning hours
- SESS charging takes place from both grid and PV

H MER International MICROGRID Conference | 8th Annual | #HIMC2020

The markets we serve

This is not an exhaustive display of Cummins-powered markets. Please refer to cummins.com for the most updated product information.

THANK YOU Q+A

